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By reviewing the application of the renormalization group to different theoreti-
cal problems, we emphasize the role played by the general symmetry properties
in identifying the relevant running variables describing the behavior of a given
physical system. In particular, we show how the constraints due to the Ward
identities, which implement the conservation laws associated with the various
symmetries, help to minimize the number of independent running variables. This
use of the Ward identities is examined both in the case of a stable phase and of
a critical phenomenon. In the first case we consider the problems of interacting
fermions and bosons. In one dimension general and specific Ward identities are
sufficient to show the non-Fermi-liquid character of the interacting fermion
system, and also allow to describe the crossover to a Fermi liquid above one
dimension. This crossover is examined both in the absence and presence of sin-
gular interaction. On the other hand, in the case of interacting bosons in the
superfluid phase, the implementation of the Ward identities provides the
asymptotically exact description of the acoustic low-energy excitation spectrum,
and clarifies the subtle mechanism of how this is realized below and above three
dimensions. As a critical phenomenon, we discuss the disorder-driven metal-
insulator transition in a disordered interacting Fermi system. In this case,
through the use of Ward identities, one is able to associate all the disorder
effects to renormalizations of the Landau parameters. As a consequence, the
occurrence of a metal-insulator transition is described as a critical breakdown of
a Fermi liquid.
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1. INTRODUCTION

There exist several physical problems where the use of simple perturbative
methods seems to be deemed to failure from the start. In these cases,
already in the leading perturbative corrections, one faces singular terms
which render the perturbative expansion meaningless, no matter how small
the initial expansion parameter is. The great success of the renormalization
group (RG) has been to turn, at least in a number of highly non-trivial
cases, this apparent failure into a powerful tool. The RG conceptual
scheme (1, 2) teaches us how singular terms, arising in the perturbative
expansion, give rise to the power-law and scaling behaviors characteristic
of the critical phenomena. (3–6) This is the most successful use of the RG,
which we only briefly recall in Section 2. In particular, we introduce the
basic elements of the RG approach such as universality, scaling, relevant
and irrelevant variables, and discuss the Wilson (2) and the field-theoretic
RG, (5, 7, 8) which can be seen as two different implementations of universality.

The origin of a singular perturbation theory is understood within the
j4 model for critical phenomena, where j(r) is the field whose thermal
average specifies the order parameter j0. (9) Indeed, the dimensionless
effective coupling constant which appears in perturbation theory in d
spatial dimensions is u/|t|E/2, where E=4−d, u is the coupling constant
describing the self-interaction of the fluctuations of the field j, and
t=T−Tc measures the deviation of the temperature T from the critical
temperature Tc. This leads to a divergence when approaching criticality
(tQ 0), for E > 0 (d < 4) [for the corresponding power counting, leading to
the expression of the dimensionless coupling constant given above, see
Fig. 1(a)]. The RG sums the leading singularities into power laws for the
order parameter j0 ’ |t|b, for the susceptibility q ’ |t|−c, which measures
the linear response to its conjugate external field h, for the specific heat
C ’ |t|−a, etc. Here, b, c, a... are called the critical exponents, or critical
indices.

We will also turn our attention to different uses of the RG approach.
One class of such applications is met when the critical behavior is uncon-
ventional. This may occur, for instance, when it is difficult to identify the
order parameter (which can be a complicated object, or a composite
operator) and the related broken symmetry. The problem of the metal-
insulator transition (MIT) in a disordered interacting electron system is an
important example of this class. (10–16) In this case the symmetries of the
physical problem may provide the guiding framework to identify the effec-
tive theory. These symmetries can be translated into Ward identities which
establish relations among the various terms of the skeleton structure of the
problem, simplifying the RG treatment.
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Fig. 1. (a) Lowest-order correction to the coupling constant of the j4 theory. Each line in
the loop carries a factor [t+q2]−1, and an integral over ddq is implied, giving a contribution
which diverges as |t|−E/2 for tQ 0, when E > 0, i.e., d < 4. The divergence is logarithmic for
E=0 (d=4). (b) Lowest-order correction to the coupling constant of an interacting Fermi
system. Each line in the loop carries a factor [e−vF(|p|−pF)]−1, where e is the missing
fermion frequency, vF is the Fermi velocity and pF the Fermi momentum, and an integral over
de ddp is implied, giving a logarithmic divergence in the external momentum or frequency,
when d=1. (c) The four-point vertex of an interacting Bose systems generates also two- and
three-leg vertices below the condensation temperature. The wavy line represents a condensed
boson. (d) Lowest-order correction to the single-particle propagator of an interacting Bose
system, associated with three-leg vertices below the condensation temperature. Each line in the
loop carries a factor [w2−c2q2]−1, and an integral over dw ddq is implied, giving a divergence
as s−Ẽ, where s is a finite external momentum or frequency, for Ẽ > 0, i.e., d < 3. The diver-
gence is logarithmic for Ẽ=0 (d=3).

The use of the RG, however, is not limited to the critical behavior. It
turns out to be extremely useful also in the stable phases. Indeed, there are
cases in which a divergent perturbation theory is the result of relevant low-
lying excitations in low-dimensional systems, despite the fact that the
system is in a stable liquid phase of the matter. This is the case, e.g., of
the Luttinger liquid in one-dimensional interacting Fermi systems (17)

[see Fig. 1(b)], or of Bose liquids in the superfluid phase for d [ 3 (18, 19)

[see Fig. 1(c), (d)]. The very condition of phase stability implies that the
susceptibilities (e.g., specific heat, spin susceptibility, compressibility, etc.)
are finite, and the exact cancellation of the singular contributions is con-
trolled by Ward identities. Nonetheless, as we shall show, a track of the
singularities is usually left in the power-law behavior of some one-particle
physical quantities.

In the following, we will touch upon all these examples, often stressing
the key role played in practice by the Ward identities which implement the
fundamental symmetries of the physical system at hand, and for the last
two cases allow for a complete solution of the low-lying excitation
problem. The rest of the paper is organized as follows. In Section 2, we
recall a few basic concepts about the RG and how Ward identities may be
used to carry out the renormalization program. In Section 3, we discuss
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the application of RG to stable phases. First, in Section 3.1, we examine
the case of interacting fermions in one (20, 21) and low dimensions. (22–25) Then,
in Section 3.2, we analyze the problem of interacting bosons. (26, 27) In
Section 4, we focus our attention on the problem of disordered interacting
Fermi systems. (28–39)

2. THE RENORMALIZATION GROUP AND THE WARD IDENTITIES

2.1. General Remarks on the Group Transformation

The first aspect that must be appreciated by looking at the historical
development of the RG is the change of perspective with respect to the
reduction scheme which, before its introduction, was at work in formulat-
ing a condensed-matter theory. The fifties and the sixties of the past
century had seen the flourishing of the quasiparticle concept. According to
this, an interacting system may be effectively described in terms of ‘‘al-
most’’ independent elementary excitations (quasiparticles). Implicit in this
attitude is the privileged role reserved to the ‘‘approximate’’ solution of the
dynamical problem and to the development of the many-body theory, with
respect to the statistical aspects. In the late sixties and early seventies, the
realization of the importance of the large-scale fluctuations in approaching
the critical point shifted the attention onto the statistical problem. (40, 41) The
divergence of the correlation length t ’ |t|−n, when tQ 0, implies the strong
correlation of a large number of degrees of freedom within a region of an
increasing linear size t, and then invalidates the previous quasiparticle-
based reduction schemes. The collective critical phenomenon does not arise
as a simple superposition of single microscopic events. Through the action
of ordering forces, the probability distribution of the collective variables no
longer obeys the central limit theorem, according to which the correct
normalization for an extensive variable is provided by the square root of
the number of degrees of freedom. This violation, via an anomalous nor-
malization of block variables, is the mathematical manifestation of the
existence of correlations at all length scales, so that the crucial hypothesis
of statistical independence becomes progressively not applicable getting
closer to the critical point.

The very fact that t Q. when approaching criticality, while invali-
dating the previous reduction schemes, provides the crucial key for the new
reduction scheme, i.e., universality. (40, 41)

There are two equivalent forms of universality. First of all, the micro-
scopic details which specify the peculiarities of each individual system
become gradually irrelevant when approaching criticality, and the infinitely
large number of degrees of freedom involved is well accounted for by
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a small set of relevant variables. Once the proper choice of the relevant
variables is made (e.g., t and h or j), one can change the parameters zi
which specify the microscopic details (unless they assume a value which
changes the symmetry of the problem, thus becoming relevant), without
changing the critical behavior of the system. Said in other words, systems
which differ in the irrelevant variables share the same critical behavior. (42)

This condition translates into the invariance of the (singular part of the)
free energy F, or equivalently of its Legendre transform C=> ddr hj−F,

F(t, h; {zi})=F(tŒ, hŒ; {z −i}),

C(t, j; {zi})=C(tŒ, jŒ; {z −i}),
i.e., a suitable rescaling of the relevant variables fully accounts for a change
in the irrelevant variables.

The second form of universality relies on the fact that the unit length
scale is irrelevant when t Q.. This is translated into the statement that
one can eliminate the degrees of freedom at short distance, by grouping
microscopic variables into ‘‘block variables,’’ within an iterated procedure
to build larger and larger blocks, without changing the critical behavior of
the system. (41)

The field-theoretic RG equations generalize the universality relations
in the sense that they relate one model system to another by varying the
coupling constant u, which is one of the irrelevant parameters zi and suit-
ably rescaling the other variables and the correlation functions. (7) In ordi-
nary critical phenomena, described by the j4 theory, j (wave-function) and
t (mass) must be rescaled. When the coupling reaches its fixed point, a two-
parameter scaling follows.

The Wilson RG implements the second idea of universality illustrated
above, by eliminating the short-wavelength fluctuations of the field j, i.e.,
those with characteristic momenta L/s < q < L, where L is the ultraviolet
cutoff, and s is the scaling parameter. (2) The real space version of the
Wilson RG implementation is the block variable transformation. (43–46)

The calculation of the critical indices was performed either numeri-
cally, through recurrence equations, or analytically, within the E expan-
sion. (47) This latter procedure relies on the perturbative expansion of the
RG transformation in the parameter E=4−d, starting from the known
case d=4. The direct calculation of the divergent critical quantities is thus
avoided.

In general, a sets of parameters {mj} specifies a given Hamiltonian H
in the space H of the Hamiltonians. The action of the RG transformation
Rs (which depends on the scaling parameter s) in this space preserves the
functional C, so that symbolically: (44, 45)

C[Rs[H]]=C[H].
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The above equation can be written in a differential form as

dRsC=0.

The functional derivatives of C yield the group equations for all the physi-
cal quantities.

A fixed point of the transformation is such that Hg=Rs[Hg]. At cri-
ticality t=. and it remains infinite under iteration of RG transforma-
tions. By iteration of the group transformation on the critical surface one
model Hamiltonian is transformed into another, until a fixed-point simpli-
fied Hamiltonian is reached as sQ., which is manifestly scale invariant,
and all the irrelevant transient terms have been eliminated. The relevant
parameters define a finite set of relevant directions of escape from a given
fixed point, (48) and their scale dependence gives a microscopic definition of
the critical indices. Universality corresponds to the domain of attraction of
a given fixed point. Within a given domain, the various RG transforma-
tions become asymptotically equivalent. (43, 44)

Standard renormalizability implies that the removal of the ultraviolet
cutoff, L ’ 1/aQ. (where a is the lattice spacing or some other micro-
scopic characteristic length scale) only requires the definition of a finite
(small) set of renormalized parameters. Relevant parameters and renor-
malized parameters coincide asymptotically in the infrared region.

Here a general problem arises. Recently, a renewed attention has been
devoted to the exact RG equations. (49) In practice, however, one has to
truncate these equations or reduce the number of flow parameters. In this
last case, one has to initialize the action to follow a renormalized trajectory
with a small number of flowing parameters, and an infinite set of param-
eters in the action must be specified. This specification is a highly non-
perturbative condition.

In practice, therefore, one should rather choose the best simple action,
guided by the symmetries of the problem and by the physical conditions.
The knowledge of the fundamental symmetries inherent to each specific
problem, and in particular those of the order parameter, have to be
assumed in order to make the proper choice of the basic variables on which
the RG transformation acts.

2.2. Various Exploitations of the Ward Identities

The RG approach takes enormous advantage from the explicit
implementation of the symmetries of the original problem, which translate
into Ward identities relating various independent quantities.
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First of all, the Ward identities allow for a reduction of the renor-
malization parameters. The case of quantum electrodynamics is a textbook
example. The local U(1) gauge invariance of the Lagrangian, which is
invariant under the simultaneous transformation of the photon field
An Q An+“nJ and of the fermion field k Q ke ieJ 4 (1+ieJ) k, where J is
the gauge field, allows to relate the self-energy and vertex renormalizations,
whose corrections correspond to superficially divergent diagrams within
perturbation theory in d=3+1 dimensions.

Secondly, the Ward identities provide the guiding framework for the
identification of the proper running variables (effective coupling constants),
and how they are related to physical quantities. We will consider the case
of disordered interacting electron systems. As we shall see, the various
interaction amplitudes are dressed by disorder. The renormalization
parameters of the corresponding field-theoretical formulation of the
problem (the non-linear s-model (14, 28)) are identified in terms of physical
quantities of the Fermi-liquid theory by requiring the gauge invariance of
the skeleton structure of the response functions. (10, 31, 32, 36, 37)

Finally, the Ward identities control the exact cancellation of the sin-
gularities in the various response functions within stable phases, despite a
singular perturbation theory. In these cases, indeed, specific symmetries are
related to additional Ward identities, which enforce the cancellations.

The combination of the three procedures indicated above leads to the
asymptotic description of: the Luttinger liquid in d=1, (17, 20) and its cross-
over to the Fermi liquid in d > 1; (22, 23) the non-Fermi-liquid behavior of an
interacting electron system with singular forward scattering in d > 1; (24, 25)

the Bose liquid in the presence of the Bose–Einstein condensate; (26) the
disordered interacting electron systems. (28, 31) In Table I we provide a
scheme of the symmetries and Ward identities which are relevant in the
various physical problems discussed in this paper.

Each specific system has been discussed at length in several papers. We
emphasize here the general common aspects and give a unifying view of
these apparently very different theoretical problems.

3. RENORMALIZATION GROUP AND STABLE PHASES

As we have already indicated in Section 1, there are cases where the
perturbation theory is singular even in a stable phase. We first recall here
the case of the Luttinger liquid in one dimension, its dimensional crossover
to a Fermi liquid as soon as d > 1 in the presence of short range forces, and
the non-Fermi-liquid behavior when the forces among the fermions are
sufficiently singular. We then consider the low-lying excitations from a
ground state of bosons in the presence of interaction, where the condensate
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Table Ia

Physical Conservation Ward
System Law Consequence Behavior Identity

Interacting Global and Cancellation Unusual Eqs. (1) and (2)
Fermions separate Left of singularities non-critical

and Right in correlation
number density functions

Interacting Global number Identification Unusual Eq. (6)
Bosons density and and reduction non-critical

U(1)-gauge of running
invariance variables

Disordered Global number Identification Critical Eqs. (1) and (17)
Interacting density and and reduction
Electrons U(1)-gauge of running

invariance variables

a In the table we give a summary of the conservation laws exploited in order to keep under
control the singularities arising in perturbation theory, for each of the physical systems dis-
cussed in the text. In particular, we indicate the conservation laws (second column), the
practical consequence of their implementation (third column), the behavior of the system
(fourth column), and the equation number where the corresponding Ward identity can be
found in the article (fifth column).

changes the power counting and leads to singular terms in perturbation
theory for 1 < d [ 3. The use of the RG, in these cases, acquires a different
meaning with respect to critical phenomena, as the thermodynamic stability
implies here a cancellation of singularities at any order in perturbation
theory in all the susceptibilities, like specific heat, compressibility, etc.
Behind these exact cancellations there must be specific symmetry proper-
ties, which can be used in the form of Ward identities to close the hierarchy
of RG equations and solve the problem. Although a stable system is char-
acterized by finite response functions, the re-summation of singularities
may still manifest itself with an anomalous dimension as in the one-particle
fermion Green’s function.

3.1. Interacting Fermions in Low Dimensions

Within a RG approach, the effective low-energy Hamiltonian which
describes a metallic system can be obtained via the Wilson-like iterative
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elimination of states outside a shell of thickness L around the Fermi sur-
face. (17, 23, 50) As L is iteratively scaled to zero a fixed point is reached in
d=3 which corresponds to a gas of quasiparticles with finite residual
Hartree-like interaction, described by the Landau functional. Ordinary
three-dimensional metals are thus well described by the Landau Fermi-
liquid theory. (51) The interaction is effectively taken into account in the
various response functions through a small set of Landau parameters,
entering the physical quantities, e.g., the specific-heat coefficient c=CV/T,
the spin susceptibility q, the compressibility “n/“m, and the spectral weight
of the Drude peak in the optical conductivity, all of them being finite.

A finite wave-function renormalization Z < 1 reduces the discontinuity
of the occupation number in momentum space at the Fermi surface with
respect to the value of the Fermi gas (Z=1). The elementary excitations of
the system are the single-particle excitations (quasiparticles), which carry
both charge and spin, and the collective charge and spin modes, which get
overdamped when they enter the particle-hole continuum of excitations.

In recent times, the interest for non-Fermi-liquid metallic phases has
been rekindled by the observation of anomalous features in single-particle
and transport properties of the cuprates, which have been interpreted as a
signature of non-Fermi-liquid behavior. (52) These compounds are layered
(quasi-two-dimensional) materials, which are insulating when stoichiomet-
ric, and become metallic upon chemical doping. The metallic phase is
strongly anomalous at low doping and gradually (and smoothly) evolves
towards a Fermi-liquid-like metal at large doping.

The breakdown of the Fermi liquid could be produced by the
suppression of quasiparticle spectral weight at the Fermi surface due to the
generation of an interaction-induced anomalous dimension in the wave-
function renormalization, Z ’ |p−pF |g, where p−pF measures the devia-
tion of the quasiparticle momentum p from the Fermi momentum pF.
In such a case, Z vanishes as pQ pF, the low-lying single-particle excita-
tions are completely suppressed, and the low-energy behavior of the system
is dominated by the charge and spin collective modes. Since these have, in
general, different velocities, the system is characterized by the so-called
charge and spin separation.

This behavior is achieved in d=1, where the metallic phase is a Lut-
tinger liquid. The hint for the breakdown of the Fermi-liquid picture is
given by the appearance of logarithmic singularities in perturbation theory
as pQ pF [see Fig. 1(b)]. These singularities are controlled by the RG, and
an effective field theory results, with marginal forward scattering, the so-
called Luttinger model, which is exactly solvable. Additional conservation
laws, which are peculiar to one-dimensional systems with forward scatter-
ing, constrain the model and lead to a closure of the equations of motion.
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Indeed, the total charge and spin conservation is translated into the
usual Ward identity

wL0−q ·L=G−1(e+w, p+q)−G−1(e, q), (1)

which connects the irreducible density (L0) and current (L) vertices to the
electronic Green’s function G. In addition, in this case, charge and spin are
separately conserved at each Fermi point p=±pF, leading to an additional
Ward identity (20) stating the proportionality of the current vertex to the
density vertex, due to the unique momentum direction,

L=vF p̂L0, (2)

where vF is the Fermi velocity and the direction versor p̂ here (d=1) is ±1.
By means of the two Ward identities (1) and (2) one is able to express the
density vertex L0 as a function of the fermion propagator G, thus closing
the Dyson equation of Fig. 2.

The effective interaction D (which is represented by the tick-dashed
line in Fig. 2) contains the charge and spin collective modes via the RPA re-
summation of the bare interaction with the fermion polarization bubble.
The RPA re-summation is shown to be exact by the use of the same Ward
identities (1) and (2). As a result density and spin response functions are
finite, leading to a stable metallic phase.

On the contrary, from the exact evaluation of G one finds that its
behavior is controlled by a non-universal anomalous dimension g. Single
particles hence move as composite objects due to the strong mixing with
the charge and spin collective modes, induced by the effective interaction.

The question then arises whether the Luttinger-liquid behavior can be
extended to higher dimensions. The analysis of the dimensional crossover
shows that this is not possible if the interactions are short-ranged. Indeed,
the generic integrals in d dimensions

F ddq f(q, p ·q)=Sd−1 F dq qd−1 F
p

0
dh(sin h)d−2 f(q, pq cos h),

= +
G G G GG

D
Λ

00

0

Fig. 2. Dyson equation for the electron Green’s function G (thick solid line). The thin solid
line represents the bare Green’s function G0, the tick-dashed line is the effective interaction D
(dressed by the RPA series), and the black triangle represents the irreducible scalar vertex L0.
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where Sd−1 is the solid angle in d−1 dimensions, are strongly peaked at
h=0, p for 1 [ d < 2, so that all the relevant vectors are still parallel or
antiparallel. In this case, the additional Ward identity (2) is still valid
asymptotically near the Fermi surface. However, the mixing with the col-
lective modes is reduced as soon as d > 1, since the effective interaction
D(q, w) is averaged over the d−1 momentum components perpendicular to
the Fermi momentum. The effective interaction, which is marginal in d=1,
scales to zero for d > 1, and the system is a Fermi liquid.

However, if we consider a long-range bare interaction among the
fermions, V(q) ’ q−a, the effective interaction dressed by the RPA series is

D(q, w)=
1
qa

w2

w2−c2q2−a
, (3)

and is dominated by a collective mode w(q)=cq1−a/2, which is propagating
and gapless for a < 2 (the parameter c depends on the microscopic param-
eters of the fermion model, and does not acquire singular corrections, see
below). This singular behavior as qQ 0 compensates the rescaling to zero
of the effective interaction due to its averaging over the transverse momen-
tum and leads to a non-Fermi-liquid behavior for a \ 2d−2. (24)

A singular interaction may appear in a system close to an instability,
due to the coupling of the fermion quasiparticles with the critical fluctua-
tions. Various proposals for the breakdown of the Fermi-liquid picture in
the cuprates rely on the existence of a quantum critical point in their phase
diagram. (53)

The problem of fermions interacting via a singular interaction is
plagued by infrared divergences and requires a proper RG treatment, sup-
ported by the Ward identities. (25)

The vertex L0 induces a coupling constant g which in principle con-
tains the divergences of the vertex (which requires the renormalization ZV),
of the fermion propagator (renormalized by Z) and of the collective-mode
propagator D (renormalized by ZD). The coupling is accordingly renor-
malized as g0=gZZ

1/2
D /ZV. However, the total charge conservation trans-

lated into the usual Ward identity (1), gives, in the dynamic limit,

Z−1V =lim
wQ 0

lim
q Q 0

L0=“eG−1 — Z−1. (4)

Moreover, since small-q scattering dominates, the charge is asymptotically
conserved at each point of the Fermi surface, leading to the additional
Ward identity (2). When the vertex L0 is accordingly expressed in terms of
the fermion propagator G, one realizes that the effective interaction D, i.e.,
the collective-mode propagator (3) does not get anomalous corrections
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beyond the RPA approximation, i.e., ZD=1. In fact, the vertex corrections
to the bare polarization bubble asymptotically cancel with the selfenergy
corrections, thank to the additional Ward identity (2).

Therefore, together with Eq. (4), this implies that g=g0, and the
dimensionless running coupling constant u=g20/s

xu, where s is some
infrared cutoff which plays the role of the scaling parameter, evolves under
RG with its bare dimension xu=1−d+a/2 as sQ 0. Therefore at the
dimension d=dc — 1+a/2 the coupling is marginal (xu=0). For d < dc
the bare dimension xu is positive, the theory scales to strong coupling and
the Fermi liquid breaks down. Finally, for d > dc, xu is negative and the
effective coupling scales to zero. Thus Z stays finite and the system is a
Fermi liquid.

From the one-loop perturbative RG, one finds the explicit form of the
wave-function renormalization as a function, e.g., of the quasiparticle
energy e. At d=dc, Z ’ |e|u0, vanishes with a non-universal exponent
u0 ’ g

2
0, as in the Luttinger liquid. For d < dc, instead, Z scales to zero as a

stretched exponential, for e Q 0. In both cases, the single-particle spectral
weight is suppressed as the Fermi surface is approached.

3.2. Interacting Bosons in Low Dimensions

The theory of the interacting Bose system has been motivated by the
observation of superfluidity in liquid helium for T < Tl=2.17K. The
connection between the form of the spectrum of the low-lying excitations
and the superfluid properties of the system was established by Landau via
the criterion which requires a finite minimum slope of the quasiparticle
dispersion e(q). (54)

The simplest interacting Bose system assumes a quartic contact
interaction v for the boson field j. The mean-field solution due to
Bogoljubov, (55) is obtained by linearizing the interaction term via the fac-
torization of the condensate density n1/20 =OjP=Oj†P. The free-particle
spectrum q2/2m is converted at low momenta into a linear spectrum
e(q)=`2n0v q — c0q, characteristic of a sound-like excitation in the liquid,
leading to superfluidity.

However, the Bogoljubov solution leads to a non-zero anomalous self-
energy S̄=vOjjP=vn0. Moreover, the first corrections to the Bogoljubov
approximate solution, within the so-called pairing approximation, lead to a
spurious gap in the excitation spectrum. (56) Both these results are in con-
trast with exact results, which show that no gap is present in the spectrum
(Hugenoltz–Pines theorem), (57) and that the anomalous self-energy
vanishes, S̄ — 0. (58)
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On the other hand, standard perturbation theory is plagued by
infrared divergences in d [ 3, due to the Goldstone sound mode, (18, 19)

despite the fact that the superfluid phase is a stable liquid phase of matter.
All these aspects call for a cautious analysis of the problem, as it was first
recognized in ref. 19. Benfatto used the Wilson RG approach to determine
the scaling behavior for a number of running variables. (27) However, his
treatment was limited to d=3 and did not take advantage of a systematic
implementation of the Ward identities. We summarize the results in generic
d dimensions, fully exploiting the Ward identities, along the lines of ref. 26.

Within the standard formulation of the problem, an external source
An=(m(r), A(r)), n=0,..., d, coupled to the boson density (current) and a
field h(r) conjugate to j(r) are introduced to generate the correlation
functions. The original problem is recovered when A Q 0, hQ 0, and m,
taken as a constant, is identified with the chemical potential of the liquid.
By introducing the longitudinal and transverse components to the direc-
tion along which the symmetry is broken, we have j=jL+ijT, with
OjLPhQ 0=`n0, and h=hL+ihT. Functional derivatives of the free energy
F[An, hi] with respect to the external sources produce the various density,
current expectation values and Green’s functions, e.g., ji0(r) — OjiP=
dF/dhi, with i=L, T.

The Legendre transform C[An, ji0]=> ddr ; i hiji0−F[An, hi] is the
generating functional of the various vertex functions, e.g., hi(r)=dC/dji0.

In this representation the mean-field Green’s functions in frequency
and momentum space read

˛GLL=
q2

w2−c20q
2 ,

GLT=
w

w2−c20q
2 ,

GTT=
c20

w2−c20q
2 ,

(5)

whence it is seen that the most singular contribution in the infrared is
carried by GTT. In the presence of the condensate, the four-leg vertex asso-
ciated to the coupling constant v yields various four- and three-leg vertices,
associated to the various coupling constants vLLLL, etc., vLLL, etc. (see
Fig. 3). Starting from Eq. (5), the dimensional analysis, in units such that
[q]=[w]=1, identifies nine relevant or marginal running variables with
singular corrections in d [ 3.
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Fig. 3. Left: various four- and three-leg vertices arising in the broken-symmetry phase.
Dashed and solid lines represent longitudinal (L) and transverse (T) modes, respectively.
Right: equation for the most singular part of the two-point vertex vLL (filled square). The
empty square represents the bare vertex v0LL, whereas the empty and black circles represent the
three-leg vertices v0LTT (bare) and vLTT (dressed), respectively. The external dashed lines, which
represent longitudinal fluctuations, are amputated, and are only drawn to indicate the corre-
sponding ingoing and outgoing momenta. The solid line represent the propagator of trans-
verse fluctuations, GTT. Notice that the perturbative one-loop RG equation for vLL is obtained
by taking the bare vertices only.

However, the number of independent parameters is reduced by the
exploitation of the local gauge invariance of the model. The free energy F,
or equivalently C, are invariant under the local transformation generated
by the operator

T=rcos J − sin J

sin J cos J
s 4 1+J r0 −1

1 0
s ,

which acts in the L, T space, i.e.,

C[An+“nJ,Tijjj0]=C[An, ji0], (6)

with i=L, T and j=L, T.
The L and T fields are changed as djL=JjT , djT=JjL. Functional

derivatives of C with respect to J, An, and j generate the various Ward
identities. The first two are obtained by a functional derivativation with
respect to J and then either with respect to jL or jT. In this way the Ward
identities connect the two-point vertices to the external fields, showing, e.g.,
that when hQ 0 no gap is present in the spectrum. In this way the
Hugenholtz–Pines theorem is simply recovered. Three-point vertices are
related to two- and four-point vertices via three relations, which are the
implementation of the continuity equation for this special case in the pres-
ence of the condensate. By then, all the strongly relevant coupling con-
stants are fixed, and one is left with four marginal running variables.
However, three of them are connected to physical quantities. In fact, they
are related to the derivatives of the vertices with respect to frequency or
momentum, and the corresponding Ward identities involve density and
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current correlation functions, thus implying relations to superfluid density,
condensate compressibility, sound velocity, all of them free of divergences.
Therefore, these identities guarantee the exact cancellation of the singular
contributions in these variables, which are then RG invariants.

After all the identifications are made, one running variable is left, e.g.,
the longitudinal two-point vertex coupling vLL.

The one-loop RG equations reproduce this situation of being left with
only vLL as running coupling, with vLL ’ s Ẽ, with Ẽ=3−d \ 0, at d [ 3. In
this case the anomalous self-energy S̄ vanishes.

For d > 3, instead, vLL=2m is finite, and the Bogoljubov result is
recovered. In both cases, the spectrum is linear, leading to sound-like
low-energy excitations. However this spectrum is realized in a completely
different way in d [ 3.

As in the Luttinger liquid for the one-particle Green’s function, the
behavior vLL ’ s Ẽ is fixed exactly by the Ward identities, which allow to
close the (dominant part of the) equation for vLL (see Fig. 3) since the three-
leg vertex vTTL is identified with vLL/jL0 via Ward identities. When dealing
with RG loop expansions, further corrections to the one-loop RG results
cannot change the power-law exponents.

4. AN EXAMPLE OF UNCONVENTIONAL CRITICALITY:

THE METAL-INSULATOR TRANSITION

4.1. Metal-Insulator Transition in Disordered Electron Systems

When we deal with disordered electron systems, the singularities do
not come directly from integrations of loops in terms of the original
fermion propagators, as in Fig. 1, but rather from the soft collective modes
related to diffusion, in terms of which an effective action can be derived for
both non-interacting (59, 60) and interacting systems. (28) In this case, we will
therefore enter in rather more details with respect to the previous topics.

According to basic quantum mechanics, within the one-electron
approximation, insulating and metallic behavior occur as a result of the
complete or partial filling of the highest occupied energy band of a solid,
respectively. Beyond the one-electron approximation, correlation effects
may lead to a drastic rearrangement of the energy levels and give rise to
insulating behavior in situations where the metallic one is expected on the
basis of band filling. This is usually referred to as a Mott phenomenon.

Scattering from randomly located impurities may also lead to a tran-
sition from a metallic to an insulating behavior. In this second case, rather
than a rearrangement of the energy levels, the coherent scattering from the
impurities modifies the phase of the electron wave function in such a way
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that it may result localized in space, thereby yielding an insulating beha-
vior. (61) Experiments were performed both in metallic and semiconducting
systems. These latter, in particular, turned out to be better suited for the
study of the MIT, since the degree of disorder could be changed by the
doping level, as it happens, for instance, in silicon doped with phosphorus
(Si:P). There exist several review articles, which summarize the develop-
ment of the field at various stages. (10–16) In recent years, there has been a
renewed interest in the MIT, which is very actively investigated in the two-
dimensional electron gas of MOSFET and heterostructure devices (for a
recent review see, e.g., ref. 62).

At theoretical level, a crucial element was the discovery that the
quantum corrections to the classical Drude formula for the electrical con-
ductivity give rise to singular terms in low-dimensional systems. These
corrections arise as a result of the quantum interference of electron waves
in disordered systems. There are two types of such terms. The first, known
as the weak-localization (WL) correction, is a purely one-particle effect and
is due to the interference of time reversed trajectories (63, 64) (see Fig. 4). The
second is a consequence of the enhancement of the electron-electron
interaction in a disordered system and is usually referred to as electron-
electron interaction (EEI) correction (65, 66) (see Fig. 5).

p

p

p’

p’

impurities

Fig. 4. Left: Diagram giving the WL correction to the conductivity, Eq. (7). The dashed line
represents the average of two impurity insertions, introduced later on in the text, Eq. (10). In
general, it is necessary to sum up diagrams with an infinite number of impurity lines. In the
leading approximation, where no crossing of impurity lines occurs, one has to consider the
dirac ladder diagram explained in the text [cf. Eq. (12), see also Fig. 7]. At the level of this
approximation, the electrical conductivity coincides with the semiclassical result of the Drude–
Boltzmann theory. The next correction is obtained by considering the series of maximally
crossed ladder diagrams shown here. In ref. 64, it has been shown that the crossed ladder may
be evaluated in terms of the direct ladder by exploting the time reversal symmetry. Notice
that, because of the crossing of all the impurity lines, the impurities visited by the top Green’s
function line are met in reversed order by the bottom one. This is the diagrammatic represen-
tation of the interference of time-reversed trajectories. Right: the WL correction due to the
interference by pairs of trajectories, one the time reversed of the other, is shown in a more
pictorial way. In the figure, the two trajectories (solid and dashed lines) differ in the way one
goes around the closed loop.

106 Di Castro et al.



(b)(a)

C

Coulomb Interaction

impurities
B

A

Fig. 5. Left: after non-trivial cancellations, as explained in ref. 66, the diagrams (a) and (b)
are those responsible for the EEI correction to the conductivity, Eq. (8). The diagrams shown
here contribute to the singlet channel. Another set of diagrams, not shown here, may be
obtained by considering the Hartree-like contributions. This latter set of diagrams gives rise to
the correction to the conductivity in the triplet channel. In the figure, the wavy line represents
the electron-electron interaction and the shaded parts the insertions of the infinite series of
direct ladder diagrams (resuming the impurity scattering) [see also Fig. 7]. Right: a physical
picture of the processes taken into account by the diagrams on the left. Two trajectories
(A and B) that differ by a closed loop do not, in general, interfere. The electron-electron
interaction, however, may lead to interference, since the extra phase gained in the closed loop
may be canceled by another electron (C) going around the same closed trajectory.

Due to the integration of the diffusive modes, in two dimensions both
the WL and the EEI correction to the conductivity are logarithmic,

DsWL=−
e2

p2(
ln(Lf/l), (7)

DsEEI=−
e2

p2(
ln(LT/l). (8)

Both the above effects have been discussed in great detail in the literature
and we do not provide a derivation of Eqs. (7) and (8) here, but limit our-
selves to a comment on the EEI correction, after Eq. (12).

In Eqs. (7) and (8), the argument of the logarithmic corrections con-
tains the ratio of two length scales. The first is the mean free path, l=vFy,
y being the elastic scattering time, which sets the microscopic scale, beyond
which the system behaves diffusively. The second length scale differs in the
two cases. For WL it is Lf, the scale over which inelastic scattering starts to
destroy the interference effects and one can show that it becomes infinite at
zero temperature and for finite systems Lf can be substituted by the size L
of the sample. (67) For EEI it is usually given by the thermal length LT. In a
diffusive system, all length scales correspond to characteristic times via the
diffusion constant D (D=v2Fy/2 in the Drude approximation): the elastic
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scattering time y=l2/D, the dephasing time yf=L
2
f/D, and the thermal

time yT=(/kBT=L
2
T/D. As a result, the above corrections become singu-

lar at low temperature.
By recalling the Einstein formula for the electrical conductivity

s=2e2N0D, where N0 is the single-particle density of states at the Fermi
level, one sees that the corrections (7, 8) in units of s are controlled by the
factor t=1/(4p2N0D() (not to be confused with the deviation from the
critical temperature of the previous sections). The parameter t is related to
the two-dimensional conductance g=G/(2e2/h), by t=1/(2gp). In good
metals, normally, g± 1 and t is a small parameter.

The WL correction has been used to formulate a scaling theory of
the MIT (59, 63) (for a pedagogical introduction see, e.g., Nagaoka’s and
Kawabata’s contributions in ref. 11). This theory has a unique scaling
variable, the dimensionless conductance g, which according to the
Thouless’s argument describes how the eigenstates of the system change
when we add together blocks of size L to make blocks of size 2L. (68) There
are two energy scales to be considered. The first is the energy level spacing
that goes as DE=1/(dN/dE)=1/(N0Ld). The second is the energy
perturbation due to the change in the boundary conditions. This may
be related to the travel time in a diffusive system of size L, i.e.,
dE % (/y=( `D/L2. The ratio of these two energies gives

dE
DE
=
1
2p

s

2e2/h
Ld−2=

g(L)
2p
.

Starting from the metallic side, where s is a constant, we see that in two
dimensions the conductance g becomes marginal. By assuming L as the
scaling parameter, one can derive a RG flow equation for g from the WL
correction in Eq. (7). As a result one predicts that, in two dimensions, the
RG flow drives the system to an insulating ground state, with gQ 0. The
EEI shows qualitatively the same effect and one wonders whether one has
to introduce further scaling parameters to take into account the interaction
strength. (69) The answer to such a question is far from trivial and has
required quite some work. In particular, it has been understood that,
within a Fermi-liquid description, the Landau parameters provide the
additional running variables whose RG flow has to be studied together
with the conductance g. (28, 31) In order to emphasize the physical origin of
the additional running variables, we show in the next section how the
interplay of interaction and disorder gives rise to singular corrections to
thermodynamic quantities. This is to be contrasted with the WL correction
which leaves the thermodynamic properties unaffected.
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4.2. Thermodynamics

We present the derivation of the correction to the thermodynamic
potential due to the interaction and disorder. (30, 36, 70) The coupling to the
impurities is described by the Hamiltonian

Himp=F dr U(r) k†a(r) ka(r),

while the electron-electron interaction is of the standard form

Hint=
1
2 F dr drŒ V0(r− rŒ) k†a(r) k†b(rŒ) kb(rŒ) ka(r).

Greek indices indicate spin indices and sum over repeated indices is under-
stood. To begin with, let us consider the first-order exchange-interaction
correction to the thermodynamic potential (see Fig. 6)

DW=−12 T
2 C
w, e

F dr drŒ V(r− rŒ, w) G(r, rŒ; e) G(rŒ, r; e+w), (9)

where we have introduced a retarded electron-electron interaction V(x−xŒ, w)
to take into account screening effects which we will come back to later on.
w and e are Matsubara boson and fermion frequencies, respectively. Notice
that the electron Green’s function depends separately on its spatial argu-
ments, since translational invariance does not hold in the presence of dis-
order. In general, however, the impurities are randomly distributed and it is

ε+ω

ε

ω
x’xx x’

Fig. 6. Left: self-energy in the Born approximation. The dashed line represents the average
of two impurity insertions, Eq. (10). When the internal Green’s function (solid line) is replaced
with the dressed Green’s function one obtains the self-consistent Born approximation. Right:
first-order correction to the thermodynamic potential (exchange term). Upon impurity
averaging, the ladder re-summation appears, which corresponds to repeated independent
scattering events (see Fig. 7).
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enough to average over them. For the average quantities the translational
invariance is restored. The average can be performed by means of the well-
known impurity technique. (54) In Eq. (9) this implies to average the product
of the two Green’s functions. We assume a Gaussian, d-correlated impurity
potential U(r) with

OU(r) U(rŒ)P=
1

2pN0y
d(r− rŒ), (10)

and use a self-consistent Born approximation for the electron self-energy
(see Fig. 6)

S(r, t; rŒ, tŒ)=
1

2pN0y
G(r, t; r, tŒ) d(r− rŒ). (11)

When the above self-energy is used to evaluate the Green’s function, one
obtains a self-consistency equation which leads to a finite lifetime y. The
average procedure is limited to correlations of impurity insertions accord-
ing to Eq. (10). Insertions made on the same Green’s function are auto-
matically taken into account in Eq. (11). When one has an average of two
or more Green’s functions, as in evaluating the response functions, corre-
lations between insertions on different Green’s functions must also be con-
sidered. To this end one re-sums the infinite series of the so-called ladder
diagrams (see Fig. 7)

2pN0y L(q, w)=1+g+g2+·· ·=
1
1−g

,

+ + + ...

p’+qp+q

p p’

ε+ω

ε

L q ω( ),= =

Fig. 7. The diagrammatic series of repeated impurity scattering. The dashed line represents
the average over the impurity strength distribution. Physically, both the top (electron) and
bottom (hole) Green’s function lines visit the same impurity site. Notice that, since the
impurity scattering is elastic, the energy is not changed along an electron line. The infinite
series of ladder diagrams is indicated with a shaded rectangle.
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where

g=
1

2pN0y
C
p
G(p, e) G(p+q, e+w).

The sum over the momentum p differs from zero only when the Matsubara
energies e and e+w have opposite signs. For vanishing frequency w and
momentum q, g Q 1 signaling the emergence of a (diffusive) pole in the
ladder. Indeed, in the low-frequency and momentum approximation,
wy ° 1 and vFqy ° 1, which defines the diffusive regime, g=
1−|w| y−Dq2y, and the ladder sum reads

L(q, w)=
1

2pN0y2
1

Dq2+|w|
. (12)

The above equation is telling us that the two-particle propagation has a
diffusive form. This means that, whereas the single-particle Green’s func-
tion is exponentially decaying over a mean free path, l=vFy (vF is the
Fermi velocity), the collective density fluctuations propagate diffusively
over large distances. It is the long-range diffusive character of the density
fluctuations which is responsible of the logarithmic behavior of the EEI
corrections to the conductivity and to the thermodynamic properties in two
dimensions, as we are about to see. Technically, the logarithmic corrections
arise from the integration over the diffusive pole. Each momentum inte-
gration, in two dimensions, yields a factor 1/D ’ t, the expansion param-
eter. We would like to emphasize that the emergence of critical massless
modes is highly non-trivial and shows how the construction of the effective
action is in this case rather unconventional, to say the least.

The diffusive form of the two-particle propagator (usually called dif-
fuson) makes the small-q region more relevant. As a consequence, the
Fourier transform of the interaction in Eq. (9) becomes important only for
small momentum transfer, i.e., V(q=0). On the other hand, the corre-
sponding Hartree diagram contribution, after the average over the impuri-
ties, selects the interaction at large momentum transfer, i.e., V(q=2pF).

The good-metal condition, g± 1, can be written in an equivalent
form as EFy/(± 1, which implies that the disorder only affects states
within a small shell (/y away from the Fermi surface. Under these circum-
stances, since disorder modifies only states near the Fermi surface, interac-
tion effects at larger energy can be taken into account via the Fermi-liquid
theory, which goes beyond the first-order perturbation theory in the
interaction, by replacing V(q=0) and V(q=2pF) with the corresponding
Fermi-liquid scattering amplitudes C1 and C2, whose lowest order diagrams
are depicted in Fig. 8. Since, in the absence of spin-flip mechanisms, the
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Fig. 8. Lowest order diagrams for small (C1) and large (C2) momentum transfer (scattering
angle).

total spin entering the two-particle propagator is a conserved quantity, it is
convenient to introduce the singlet and triplet scattering amplitudes

Cs=C1−
1
2 C2, Ct=

1
2 C2.

We recall that the scattering amplitudes Cs and Ct are related to the
Landau Fermi-liquid parameters F0s, a which enter in the compressibility
and spin susceptibility, by

Cs=
1
2N0

F0s
1+F0s

, Ct=−
1
2N0

F0a
1+F0a

.

From now on, when necessary, N0 is assumed to include the Landau
effective-mass correction. The scattering amplitudes are dynamically
screened by the diffusive density fluctuations, leading to dressed scattering
amplitudes

Cs, t(q, w)=Cs, t
Dq2+|w|

Dq2+(1 + 2N0Cs, t) |w|
.

However, this dressing does not alter the degree of divergence of a given
diagram.

We are now ready to present the expression for the correction to the
thermodynamic potential. By means of the previous substitutions, this is
obtained to all orders in the interaction, but to first order in the expansion
parameter t. It is convenient to use the standard trick (71) of multiplying the
interaction by a parameter l and integrating over it between 0 and 1. In
Fig. 6 and in the corresponding Hartree diagram, after integrating over the
Green-function loops, which, as in the ladder case, contribute with the
appropriate factors, we are left with the integration over frequency and
momentum flowing in the ladder, and

DW=−T C
qw

F
1

0
dl 5 N0Cs |w|
Dq2+(1−l2N0Cs) |w|

−C
M

N0Ct |w|
Dq2+(1+l2N0Ct) |w|− iM(1+2N0Ct) ws sgn(w)

6 .
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To allow for the calculation of the spin susceptibility, in the above equation
we have introduced also a magnetic field via the Zeeman coupling,
ws=gLmBB, where M labels the triplet states and gL is the Landè factor.
Notice the introduction of the Fermi-liquid renormalization of the Zeeman
energy. (72) After evaluating the integrals one gets

DW=DW0+DW1+tN0T2 DW2 1
ws

T
2 (13)

where

DW0=−tN0T2(2N0Cs−6N0Ct) 1
p2

6
ln(Ty)+A2 ,

DW1=tN0N0Ct(1+2N0Ct) w2s ln(wsy),

DW2(x)=(1+2N0Ct) I(x)−I((1+2N0Ct) x)−4AN0Ct,

I(x)=F
.

0
dy b(y)[(y−x) ln |y−x|+(y+x) ln |y+x|],

(14)

where b(x) is the Bose function and A % −0.24. Equations (13) and (14)
are organized to show the zero- and the large-magnetic-field behaviors,
which are connected by the crossover function DW2(x). Notice that at small
x, one has DW2(x) % −N0Ct(1+2N0Ct) x2 ln x. As a result, the corrections
to the specific heat and to the spin susceptibility read

dCV=CV, 0t(N0Cs−3N0Ct) ln(Ty),

dq=−q04tN0Ct(1+2N0Ct) ln(Ty),
(15)

where CV, 0=2p2N0T/3 and q0=N0(gLmB)2/2 are the non-interacting
values. We note that there is no dependence on the chemical potential
implying that there are no singular corrections to the static compressibility
“n/“m, i.e., d(“n/“m)=0. As a result, the compressibility has the Landau
value

“n
“m
=2N0(1−2N0Cs) — 2N0Z

0
s . (16)

Equations (15) contains the leading divergent perturbative terms to
thermodynamic properties of a disordered Fermi liquid. Before proceeding
to thenext sections,wherewediscuss therenormalizedperturbationtheoryand
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how to obtain the equations for the RG flow including transport proper-
ties, we remark that in various physical systems the above corrections can
actually be observed already in the metallic phase, where they are still
within the reach of perturbation theory. (13)

4.3. Ward Identities and Renormalized Fermi Liquid

In order to get the RG equations, one has to absorb the logarithmic
corrections in terms of the renormalization of a set of running variables.
This is usually done in terms of the relevant parameters of the Hamiltonian.
The difficulty of the problem at hand is precisely the fact that the effective
Hamiltonian is not simply related to the microscopic one we started from.
We have seen in the previous section that the logarithmic correction origi-
nates from an integration over the collective diffusive density modes. The
propagator of the diffusive mode, which we have called ladder, is the result
of a re-summation of impurity scattering to all orders. If we are going to
obtain a renormalized theory, we must understand how the logarithmic
correction we have obtained in the previous section will manifest in the
effective field theory for the diffusive modes. This task can actually be
carried out systematically from the outset by deriving a matrix-field non-
linear s-model. (28) This approach, however, makes the connection with the
physical quantities less direct. By the use of the Ward identities, all the
renormalizations required by the non-linear s-model are expressed through
the Landau parameters, thus showing that the disordered interacting elec-
tron system can be effectively described by a scale-dependent Landau
Fermi-liquid theory. (29, 31, 36, 37, 73) For this reason, we adopt here the
approach of perturbation theory combined with the Ward identities.

We begin by recalling the expression of the number density and
current in linear response regime

jm(w, q)=Kmn(w, q) An(w, q),

where jm=(r, j) and Am=(f, A). Kmn is the standard response function for
density and current. In particular the conductivity and the compressibility
are given by

s=− lim
wQ 0
e2

Im K
w
,

“n
“m
=− lim

q Q 0
K00(0, q),
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where K=(1/d); 1, d Kii, assuming spatial isotropy. In a similar way, one
defines the spin-spin q(w, q) and energy-energy qE(w, q) response func-
tions, whose static limit (i.e., w Q 0 first, q Q 0 after) are the spin suscepti-
bility and the specific heat times the temperature.

The global conservation law and gauge invariance give rise to the
following Ward identities

qmKmn=0,

Kmnqn=0,
(17)

that must be obeyed to all orders in perturbation theory. Notice that the
first equation is nothing but a different way of writing Eq. (1). For
instance, a disordered non-interacting Fermi system has a density-density
response function given by

K00=−
“n
“m

Dq2

Dq2− iw
=−

“n
“m
−
2iwN0
Dq2− iw

.

The first expression is nothing but a statement about the diffusive nature of
the density fluctuations. The second expression, which separates the so-
called dynamic part of the response function, is the result of a direct dia-
grammatic calculation. To understand this point, recall that the evaluation
of the bubble-like diagram involves an integral over the energy of a
product of two Green’s functions. The dynamic part corresponds to the
energy range where the two Green’s functions have poles on opposite sides
of the real axis, in the complex plane, and a ladder resummation can be
performed. N0 appears since we are dealing with a non-interacting system.
From Eqs. (17), it follows that

K00(w, 0)=0, (18)

which immediately gives that the compressibility “n/“m coincides with the
single-particle density of states, as it is expected for the non-interacting
system. The single-particle density of states, furthermore, may be generally
related to the dynamic part of the response function K+−00 , i.e.,

K+−00 =−2i F
0

−w

de

2p
C
p
G(p, e) G(p+q, e+w) L+−0 (p, q, e, w), (19)

where L+−0 is the density vertex in the energy range E(E+w) < 0, which in
the non-interacting case gives the total dynamic part of the response func-
tion. The reason for defining the vertex L+−0 in this energy range is due to
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the possibility of inserting the ladder resummation. For positive external
frequency w, the energy restriction determines the integration range over
the energy E in Eq. (19). By using the general Ward identity Eq. (1), in the
dynamic limit, one gets the single-particle density of states

N — −
1
p
C
p

Im G(p, e=i0+)=lim
wQ 0

lim
q Q 0

1
2
K+−00 (w, q). (20)

In the simple non-interacting case, of course, N=N0.
We stress that both Eqs. (18) and (20) are always valid and we use

them in the following when dealing with interacting electrons. Here, they
will allow us to control the logarithmic corrections which arise from the
interplay between the diffusive motion of the electrons and their mutual
interaction. We refer to renormalized quantities with a bar. The diagram-
matic skeleton structure of the response function is shown in Fig. 9. Ls is,
in the interacting case, the vertex which, when multiplied by K+−00 gives the
total dynamic part of K00, which includes also terms ending with two
advanced (++) or retarded (−−) Green’s functions. (37) A direct pertur-
bative evaluation of the density response function gives

K̄+−00 =−
2iwN0z2Ls
D̄q2− iwZs

, K̄00=−
“n
“m
+K̄+−00 Ls (21)

where

Zs — Z−2N0z2C̄s (22)

is the renormalized form of Z0s , defined in Eq. (16), and the singular
corrections have been absorbed in the renormalized quantities D̄, Z, z, C̄s,
and Ls. The first three are obtained by considering the corrections to the
ladder in the presence of interaction. C̄s is the renormalized scattering
amplitude in the singlet channel.

Here, the parameter z plays the role of the wave-function renormaliza-
tion of the effective field theory with the ladder as a propagator, while Z
renormalizes the frequency in the ladder, and it will be identified with the

+K      =   K00 00
st

Fig. 9. Skeleton diagram of the response function. The black triangles represent the vertex Ls,
the open squares the scattering amplitudes Cs, t, and the shaded rectangle the ladder of
impurity lines, Eq. (12). Kst00 is the static limit of the response function, i.e., minus the compres-
sibility.
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specific heat renormalization parameter. By the use of Ward identities we
now show that z coincides with the renormalization of the single-particle
density of states introduced by the disorder in the presence of the inter-
action, i.e.,

N=zN0. (23)

Indeed, when Eqs. (18) and (20) are used in Eq. (21), we obtain

N
N0
=

z2Ls

Zs
,

“n
“m
=2N0

z2L2s
Zs
. (24)

Since the compressibility has no singular corrections, Zs coincides with Z0s
and zLs=Z

0
s , whence Eq. (23) follows. Thus, the single-particle density of

states becomes scale-dependent, in contrast to the non-interacting case.
In a similar way, considering the heat and spin response functions and

introducing Zt=Z−2N0z2C̄t, one obtains for the specific heat and for the
spin susceptibility the relations

C̄V=ZCV,

q̄=Ztq0.
(25)

The above equations relate the renormalization parameters Z, and Zt that
appear in the perturbative correction to the physical quantities CV and q.
Contrary to Zs, Z, and Zt are affected by logarithmic singularities, which
have been derived (15) through the evaluation of the thermodynamic
potential. Alternatively, one can compute the corrections to Z, and Zt
directly (although with a lot more effort) in perturbation theory and find a
perfect agreement between the expressions obtained via the thermodynamic
potential and Eqs. (25).

Before going to the next section, to deal with the RG equations, we
would like to recall the complete expression for the electrical conductivity.
To do so, we notice that in the presence of Coulomb long-range forces, to
avoid double counting, one has to subtract the statically screened long-
range Coulomb C0 from the full singlet scattering amplitude entering the
ladder resummation for the density-density response function. Hence,
C̄s Q C̄s−C0, Eq. (22) for Zs is modified accordingly, and C0 reads

C0(q, w=0)=
VC(q) L2s

1+VC(q) “n/̄“m
|0
qQ 0

L2s

“n/̄“m
. (26)

As a consequence, by using Eq. (24), we derive the constraint

Z=2N0z2C̄s. (27)
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Then the EEI correction to the conductivity by including also the effect of
the triplet channel and of the dynamical re-summation (28, 31) becomes

dt=−t2 51+3 11−(1+2ct)
2ct

ln(1+2ct)26 ln(Ty), (28)

where N0z2C̄t/Z=ct. The first term in the square brakets is the contribu-
tion due to the singlet channel in the presence of long-range Coulomb
interaction [see Eq. (8)]. Notice that the corresponding scattering ampli-
tude does not appear explicitly, due to the constraint (27). An analogous
contribution would come from the WL correction, given by Eq. (7). This
last term, together with the contribution of the interaction in the particle-
particle channel, is here suppressed to maintain the discussion simple while
keeping all the general features of the theory.

Finally, we would like to remark about the various ‘‘density of states’’
we have encountered. We have the thermodynamic density of states or
compressibility “n/“m, the coefficient of the linear-in-T term of the specific
heat, c, and the single-particle density of states obtained from the Green’s
function, N. In the non-interacting case all these quantities, together with
the spin susceptibility, coincide with N0, but in the presence of interaction
and disorder they are renormalized by Zs, Z, z, and Zt, respectively. The
Ward identities have been a very powerful tool in controlling the different
role played by these quantities in the renormalized theory.

4.4. One-Loop RG Equations for the Renormalized Fermi Liquid

In the previous section we have seen that all the divergences which
appear in perturbation theory may be absorbed into the renormalization
of the physical parameters characterizing a Fermi liquid. Therefore, we
can use the previous results to obtain here the RG flow equations for
Z=CV/CV, 0 and Zt/Z=q/Zq0. From Eqs. (15) and (28), introducing the
scaling variable s=−ln(Ty), one gets (28, 31, 32, 34, 37)

˛
dZ
ds
=−

tZ
2
(1−6ct),

dct

ds
=
t
4
(1+2ct)2,

dt
ds
=− E

t
2
+t2 51+3 11−(1+2ct)

2ct
ln(1+2ct)26 ,

(29)
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where the last equation is derived through Eq. (28), considering the bare
dimension E=d−2 of the coupling t in units of inverse length. We briefly
review the main consequences of the above equations. Let us begin the
discussion in two dimensions, i.e., E=0 (see Fig. 10). Under the RG, ct
grows always and diverges at a finite scale. In the equation for t the singlet
contribution makes it larger (localizing character), whereas the triplet con-
tribution (in the round brackets) does the opposite (antilocalizing). If the
initial value of ct is not too large, t initially grows until the growth of ct
makes the triplet contribution the dominating one. As a result, t has a
maximum as a function of s. However, due to the strong-coupling runway
of ct, one cannot seriously trust the above equations quantitatively.
Nevertheless, the physical indication of some type of ferromagnetic insta-
bility is rather clear due to the diverging spin susceptibility associated
with ct. Furthermore, the dominating antilocalizing effect of the triplet
while t remains finite, strongly supports the possibility of a metallic phase
at low temperature, in contrast with the non-interacting theory based on
WL only. (32, 34, 37–39) Indeed, this metallic phase in d=2 has been recently
observed (See ref. 62). In addition, due to the divergence of ct also Z goes

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

γ/
(1

+γ
)

t/(1+t)

Fig. 10. RG flow corresponding to the Eqs. (29), for d=2 (E=0), with c — ct. c/(1+c) is
plotted as a function of t/(1+t) to transform the interval [0,+.) into the interval [0, 1] on
both axes. Observe that ct always scales to strong coupling, i.e., c/(1+c)Q 1.
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to the strong coupling regime, leading to an enhancement of the specific
heat, which is however hardly observable in two dimensions.

In three dimensions (see Fig. 11) one has a richer scenario depending
on the initial values of the running couplings. The main difference is that
there exists a critical line in the t− ct plane asymptotically given by
tct=E/2, where under the RG flow tQ 0, ct Q. with their product being
constant. On the weak-disorder side of this line, the system scales to a
conductor with vanishing t, whereas on the strong-disorder side the system
behaves qualitatively as in the two-dimensional case discussed above,
leaving again the possibility open for a ferromagnetic instability at a finite
scale. In this latter case, however, the strong-coupling runaway flow
requires to go beyond the one-loop approximation we have presented here
leaving the problem of the proper treatment of the metal-insulator transi-
tion still open. An approximate treatment of the two-loop correction is
possible, but its discussion is well outside the scope of this paper. We refer
the reader to ref. 15. However, we remark that, whenever there is a reduc-
tion of the effect of the triplet channel, due to a magnetic coupling altering
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0 0.2 0.4 0.6 0.8 1

γ/
(1

+γ
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t/(1+t)

Fig. 11. RG flow corresponding to the Eqs. (29), for d=3 (E=1). The notations are the
same as in Fig. 10. Observe the two possible asymptotic behaviors: on the weak-disorder side
(small t), c scales to a finite value, whereas a two-dimensional-like behavior, with c Q., is
found on the strong-disorder side (large t). The separatrix is marked by a thicker line.
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the symmetry, as in the presence of a magnetic field with Zeeman spin-
splitting, (31, 35) spin-flip scattering (29, 31, 35) or spin-orbit scattering (29, 33) one
obtains a bona-fide MIT with different universality classes with respect to
the Anderson localization. For a comparison with the experiments see, e.g.,
ref. 74.

We finally emphasize that, as in the interacting boson case, the per-
turbative RG at one loop confirms the conclusions drawn by the imple-
mentation of the Ward identities. However, in the present case, since we
are dealing with critical behavior, the singularities are resummed in power
laws, rather than to be cancelled as required in a stable liquid phase.
Mathematically this manifests in the lack of additional symmetries which
prevents us from closing the equations of motion and solving the problem
exactly. We have achieved, however, via the Ward identities, that the
remaining singularities describe the critical behavior of the specific heat,
spin susceptibility, and of the coupling t related to the conductance.

ACKNOWLEDGMENTS

S.C. and C.D.C. acknowledge financial support from the Italian
MIUR, Cofin 2001, Prot. 20010203848, and from INFM, PA-G0-4. R.R.
acknowledges partial financial support from E. U. by Grant RTN 1-1999-
00406, and from the Italian MIUR, Cofin 2002.

REFERENCES

1. M. Gell-Man and F. E. Low, Phys. Rev. 95:1300 (1954); N. N. Bogoliubov and P. V.
Shirkov, Introduction to the Theory of Quantized Fields (Intersciences Publishers, New
York, 1959); V. L. Bonch-Bruevich and S. V. Tyablikov, The Green’s Function Method in
Statistical Mechanics (North-Holland Publishing Company, Amsterdam, 1962).

2. K. G. Wilson, Phys. Rev. B 4:3174 (1971); ibid., 3184 (1971).
3. See, e.g., Proceedings of the International School of Physics ‘‘Enrico Fermi,’’ Course LI,

M. S. Green, ed. (Academic Press, New York, 1971).
4. K. G. Wilson and J. Kogut, Phys. Rep. C 12:75 (1974).
5. A general overview and references are found, e.g., in Phase Transitions and Critical
Phenomena, Vol. VI, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

6. K. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, 1976); A. Z.
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